Integer-valued polynomials on prime numbers and logarithm power expansion
نویسندگان
چکیده
منابع مشابه
About polynomials whose divided differences are integer valued on prime numbers
We show here how to construct bases of the Z-module Int(P,Z) of polynomials that are integer-valued on the prime numbers together with their finite divided difference, that is, Int(P,Z) = { f ∈ Q[x] | ∀p, q ∈ P f(p) ∈ Z and f(p)− f(q) p− q ∈ Z } .
متن کاملInteger-valued Polynomials on Algebras
Let D be a domain with quotient field K and A a D-algebra. A polynomial with coefficients in K that maps every element of A to an element of A is called integer-valued on A. For commutative A we also consider integer-valued polynomials in several variables. For an arbitrary domain D and I an arbitrary ideal of D we show I -adic continuity of integer-valued polynomials on A. For Noetherian one-d...
متن کاملInteger-valued Polynomials
Let R be a Krull ring with quotient field K and a1, . . . , an in R. If and only if the ai are pairwise incongruent mod every height 1 prime ideal of infinite index in R does there exist for all values b1, . . . , bn in R an interpolating integer-valued polynomial, i.e., an f ∈ K[x] with f(ai) = bi and f(R) ⊆ R. If S is an infinite subring of a discrete valuation ring Rv with quotient field K a...
متن کاملPrime numbers and quadratic polynomials
Some nonconstant polynomials with a finite string of prime values are known; in this paper, some polynomials of this kind are described, starting from Euler’s example (1772) P(x) = x2+x+41: other quadratic polynomials with prime values were studied, and their properties were related to properties of quadratic fields; in this paper, some quadratic polynomials with prime values are described and ...
متن کاملPrime Numbers and Irreducible Polynomials
The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry. There are certain conjectures indicating that the connection goes well beyond analogy. For example, there is a famous conjecture of Buniakowski formulated in 1854 (see Lang [3, p. 323]), independently reformulated by Schinzel, to the effect that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2007
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2005.12.009